If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.9t^2+6t-40=0
a = 1.9; b = 6; c = -40;
Δ = b2-4ac
Δ = 62-4·1.9·(-40)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{85}}{2*1.9}=\frac{-6-2\sqrt{85}}{3.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{85}}{2*1.9}=\frac{-6+2\sqrt{85}}{3.8} $
| x-45000/5=9000 | | -6(u-9)=9u+39 | | 8x=138 | | x-45000/5=0 | | -1+9m=125 | | 2/3(x+6)=206 | | -10=1/2*x+x | | 3x-7=-70 | | 6(v+5)-8v=14 | | y+5y=50 | | v+43=54 | | 10x+2=124 | | 4x/4x+2=8/9x | | 4x/4x+2=40/9x/5x | | 16=2(2a-12) | | 21.2+m=31 | | c+5=2c+10 | | 5x+-5=120 | | 41-2a=31 | | 1/3x~18=2 | | 2(7x+48)=3x+60 | | 20x=7x+6 | | 1.2x+1.4=-18+10.9x | | 2/3u-7=-5/2u-1/3 | | 2x2+10x-18=0 | | 90+x+(2x/15)=180 | | 8x=55+85 | | 3/4y-2=12 | | 3u-9=-7u | | 7+14n=4-32n | | 5y-(3y+4)=16 | | 11-2b=15+2b |